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Abstract

We present a comprehensive review of galaxy bias, that is, the statistical relation between the distribution of
galaxies and matter. Moreover, we focus on large scales where cosmic density fields are quasi-linear. On these
scales, the clustering of galaxies can be described by a perturbative bias expansion, and the complicated
physics of galaxy formation can be absorbed into a finite set of coefficients of the expansion, called bias
parameters. The review begins with a pedagogical proof of this very important result, which forms the basis

of the rigorous perturbative description of galaxy clustering, under the assumptions of General Relativity
and Gaussian, adiabatic initial conditions. Key components of the bias expansion are quantities that are
nonlocal in the matter density, in particular tidal fields and their time derivatives. This derivation is followed
by a presentation of the peak-background split in its general form, which elucidates the physical meaning
of the bias parameters, and a detailed description of the connection between bias parameters and galaxy
(or halo) statistics. We then review the excursion set formalism and peak theory which provide predictions
for the values of the bias parameters. In the remainder of the review, we consider the generalizations of
galaxy bias required in the presence of various types of cosmological physics that go beyond the standard
ACDM paradigm with adiabatic, Gaussian initial conditions: primordial non-Gaussianity, massive neutrinos,
baryon-CDM isocurvature perturbations, dark energy, and modified gravity. Finally, we discuss how the
description of galaxy bias in the galaxies’ rest frame is related to observed clustering statistics measured
from the observed angular positions and redshifts in actual galaxy catalogs.
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What we observe

- halo formation

- halo merger

- gas cooling
- star formation

- Feedback
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Motivation and goal

» Therefore, exploiting galaxy survey data beyond BAO
requires robust modeling of galaxy bias.

* Goal: to write the observables (galaxy two- and three-
point correlation function) in terms of matter
correlation functions and a few bias parameters;
then, cosmological parameters can be measured after
marginalizing over them.

* Possible, at least, in quasi-linear scales where cosmic
density fields are well modeled by perturbation theory.



A simple model: thresholding

Kaiser (1984)
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A simple model: thresholding

Essentially, excursion set, peak theory are extension of this.

v, Smoothing
"4 (or picking up a
'y | certain mass M)

Wl Mathematically,

T Tl (=0, (6(9) - 5. )
\.\‘ ‘ ; | \ !‘ ‘ Al o

above threshold q — Lagrang]‘an Coordlnate

Critical over-

density surface L

Thresholding leads to LIMD (Local-In-Matter-Density) bias:
bi 2

¢ = stochasticity; bi*, bot = bias parameters



Lagrangian to Eulerian bias

How to connect the Lagrangian density to what we observe?

* Assumptions :

Eulerian » 1. Galaxies co-move with large-
Space scale structure (no non-
B gravitational momentum
’ transfer; good on large-scales)

T

iBﬂ(T’)

- 2. Galaxies form instantaneously
at time T=1~+ (this can be think

of as a 'Green's function' for
: alaxy bias
o Lagrangian galaxy bias)

- Spaceé . QOn large-scale where perturbation

theory is valid (quasi-linear scales)



Lagrangian to Eulerian bias

Set of equations to solve

d6(x, T) .y
e FV-[(1+06(x,7))v(x,T)] =0 Matter continuity eq.
20,(x,T)
g\ ) o _ .
Py -V [(1 + 6, (x, T)) v(x, T):I =0 Galaxy continuity eq.
ov(x, T)
7o T T)-VIvix, 1)+ #(T)x(x,7) = -Ve(x,7)  Euler eq.
3
V2d(x, T) = Eﬁz(f)ﬂm(’cﬁ(x, T) Poisson eq.
L 1 L <2 1 L <3 4 s i
6,(x,,T,) =b16,+&,+ Ebz 6; + ng 6, +0(5") Initial condition



Solution: local bias

58 — b15 + &
1 2 2
_I_ 5[325 ‘I‘ sz(Kl]) + 855

1 3 ) 3 (3) 2 2
—|—gb35 + b2 0(Kij)” + bys(Kij)” + by Oy~ + €520 + £x2(Ki5)

+0(6%) McDonald & Roy (2009)

Local bias: all terms here are evaluated at the same location!
That is, galaxy density is determined by local quantities.



Solution: local bias

0g =b10+e¢ linear order

1
+ 5 by6° + by2(K;;)* + €56 quadratic order

1
-+ —b353 + b5K25(Kij)2 + bKB(Ki]')B + btdOt(j) + 85252 + SKZ(Kij)z

N 2 (5% cubic order



Solution: local bias

58 — b15 + &
1 2 2
+ §b25 ‘I‘ sz(Kl]) + 855

1 3 y) 3 (3) 2 2
—I—gb35 -I-b5K25(Kij) +bK3(Kij) + DOy + €520 +8K2(Kij)

+ 0(6%)

Terms previously known as local bias (Fry & Gaztanaga 1993)
Local in a sense that 0, only depends on 0 at the same position.
This, however, only captures a part of the full terms, and we call this
LIMD bias (Local-In-Matter-Density bias).




Solution: local bias

5g — b15 + €
1 2 2
_I_ §b25 _I_sz(Kl]) +855
1
‘I’ gb353 ‘I" b5K25(Kij)2 + bKS(Kij)g ‘I‘ btdOt(j) + 85252 + SKZ(KU‘)Z
+0(8%)

Terms proportional to the local tidal field Kj;, and local density 6.



Solution: local bias

58 — b15 + &
1 2 2
_I_ 5[)25 + sz(Kij) + 855

1
‘I’ gb353 ‘I" b5K25(Kij)2 + bKS(Ki]')B ‘I‘ btdOt(j) + 85252 + SKZ(KU')Z

+ 0(6%)

Terms proportional to the local tidal field Kj;, and local density 6.

The new term that is not proportional to the local density field nor
local tidal field. Therefore, the general bias expansion should NOT be
the Taylor-type expansion of local density field and local tidal field!




Solution: local bias

5g:b15+8

1 2 2
+§b25 ‘l‘bKZ(Kl]) +855

1 3 2 3 (3) 2 2
+gb35 +b5K25(Kl]) +bK3(Kl]) -I-btdOtd +8525 +8K2(Kij)

+ 0(6%)

Terms proportional to the local tidal field Kj;, and local density 6.

This term is, in fact, the convective derivative of the local tidal field,
the rate of change of the local tidal field measured by a local observer
moving with the galaxies.



Solution: local bias

5g:b15+8

1 2 2
+§b25 ‘l‘bKZ(Kl]) +855

1
‘I’ gb353 ‘I" b5K25(Kij)2 + bKS(Ki]')B ‘I‘ btdOt(j) + 85252 + 8K2(Kij)2

+ 0(6%)

Terms proportional to the local tidal field Kj;, and local density 6.
This term is, in fact, the convective derivative of the local tidal field.

We then have higher-order stochastic bias terms, which are
proportional to € for galaxies form at a single time, but must treat as
independent parameters for general galaxy samples.



General local bias expansion

0,(x,T) = Z boO(x, 7))+ e(x,7)+ Z eo(x, 7)O(x, T)
0 0

* Here, O's are operators that the galaxy density contrast depends upon.
€, € are stochastic variables.

* Which operators should be included?

* Key principle: All observables of the local observers can affect the evolution
of galaxies: hence, all local-observable operators must be included!

* In plane vanilla cosmology, these are density(8), tidal field (K;) and their
convective derivatives (along the trajectory of local comoving observers).

* In perturbation theory, each order contains unique time dependence; including
higher-order terms effectively includes time evolution as well.



General local bias expansion

0,(x,T) = E boO(x,7)+ e(x,T)+ E £o(x, 7)0(x, 7)
O O
- Here, O's are operators that the galaxy density contrast depends upon.
€, €y are stochastic variables.

- What other operators do we discuss in the review?

- Primordial non-Gaussianities (7) : ¢y, at initial time

-« Massive neutrino fluctuations (8.1) : no new term, but scale-dependent b,

« Baryon-CDM relative velocity (8.2) : Oy, Oy at recombination

* Clustering dark energy (8.3) : Opg~(1+w), scale-dependent b; near k;.



Galaxy power spectrum

2
P,(k,7)=(by)" P, (k,T)+P,
- Power spectrum = Two-point function in Fourier space

* In the leading order expression, linear bias b is strongly
degenerated with the amplitude of power spectrum.

- Amplitude of power spectrum can be an important
dynamical probe of dark energy! That is, it measures
how much dark energy retards the linear growth of
structure.



Galaxy bispectrum

B, (ky, ko, k3) =2b; [; + = (ky - ky) (i i ) + (k1 ks) } Py (k1)Pp(ky) + (2 cyclic)
2 1

+ b% [bz + 2bye ((kl ko) — %)] P; (k,)P;(ky) + (2 cyclic)

+2b, P, | Py (ky)+ P (ky)+Pr(ks)] + B,

» Bispectrum = three-point function in Fourier space

- Statistical homogeneity dictates the triangular condition:
ki+ka+ks=

» Five free parameters (b1, b2, bxe, Be, Pees), but many
many triangles with unique configuration dependence!



Shape of galaxy bispectrum
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Projection: measuring bias

Table 5: Projected uncertainties of the deterministic bias marameters, b1, b2, by2, and the amplitude of linear power specgrum,
In A, from current and upcoming galaxy surveys. For all case, we assume by = 1.5, and calculate b2 from the fitting formula in
Tab. 6 (b2 >~ —0.69) and by, by assuming Lagrangian LIMD biasing which yields by = —2/7(b1 — 1) ~ —0.14. Future galaxy
surbeys can measure the galaxy bias and the amplitude of the linear power spectrum to a few percent-level accuracy.

survey redshift  Volume 104ng Fmax = 0.1 h/Mpc kmax = 0.2 h/Mpc
Zeent Gpc®/h®  h™°Mpc® (10003, 1000b, 0b,, Oma |1000s, 1000b, 0 , Oina
eBOSS (LRG) 0.8 6.1 4.4 32 45 030 043 | 7.0 45 0.059 0.093
eBOSS (QSO) 1.4 39 1.5 33°. 51 036 051 | 11 6.5 0.092 0.15
HETDEX 2.7 2.7 3.6 190 260 1.8 2.6 59 39 0.49 0.79
PF'S 1.5 8.7 4.6 47 66 0.44 0.62 11 6.7 0.089 0.14
DESI 1.1 40 3.3 18 20 0.17 0.25 4.4 2.7 0.037 0.059
WFIRST 1.9 13 12 39 49 0.32 046 | 6.8 4.4  0.056 0.091
Euclid 1.4 63 5.2 15 20  0.14 0.20 3.3 2.1 0.027 0.044

» Measure bias parameters to a few percent from galaxy surveys.

- Combining Pk and Bk measures the amplitude of fluctuations.



BAO from 3PCF!

pon (X1, T2, x3) =b3¢B3) (212, 203, 231) + 5%52&53) (12, T23,31) + b%bwf& (12, 23, 31)

1 :
:bi’ﬁﬁg) (T12, 23, T31) + b7 {bgfL(asgg)fL(xgl) - QbK2£§O)(QZ‘13) §0) (223) [,u%g,?)l - §] + (2 Cychc)}

1.0

3323/3312

3323/3312

12 = 100 [Mpc/h]| | 7 -0.2
1.5 20—-0.3

0.5 1.0
3731/3712



What else in the review?

- Renormalization of bias:
Observed bias parameters are not the same as the bare bias
parameters in the expansion, but the renormalized one.

» Correlation function bias = PBS bias:
Bias that we measure from correlation functions are exactly the
same as what we define through Peak-Background Split method:
that is, bias is the fractional change of number density of galaxies
as a response to the change of background cosmology.

* Other method of measuring bias with explicit smoothing:

- Bias from the moments of density field = bias from the scatter
plot (matter density vs. halo density)



What else in the review?

« Theoretical methods of calculating bias:

 Excursion set approach (Bond+)
* Peak theory (BBKS)
+ Excursion set peak/Peak-Patch

- Connecting galaxy clustering to large-scale structure observables:

Halo Occupation Distribution

Effect of Astrophysical selection (tidal alignment; radiative transfer)

general relativistic projection effect

Redshift-space distortion

wide-angle (or light-cone) effect
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